Technical Specifications

MEASUREMENT

- **Operating Principle**: Partial Pressure
- **Measurement Range Outup**: 0-1500 mBar O$_2$
 - 11 - 17 mV with 300Ω load resistance in 210 mBar O$_2$ at 20°C
- **Response Time (T_{90})**: < 20 s (air to 100% O$_2$)
- **Baseline Offset**: < 200 μV
- **Linearity**: Linear 0-100% O$_2$

ELECTRICAL

- **Temperature Compensation**: Partial
- **External Load Resitor**: 300 Ω
- **Connector**: Slip Rings

MECHANICAL

- **Weight**: 27 g (nominal)
- **Housing Material**: White ABS
- **Orientation**: Any

ENVIRONMENTAL

- **Typical Applications**: Critical Care Anaesthesia
- **Operating Temperature Range**: -20°C to +50°C
- **Operating Pressure Range**: 0.5 - 2.0 Bar
- **Operating Humidity Range**: 0 - 99% RH non-condensing

LIFETIME

- **Long Term Output Drift in 100% O$_2$**: <5% signal loss/year
- **Recommended Storage Temp**: 0°C to 20°C
- **Expected Operating Life**: 0.94 x 106 % O$_2$ hours at 20°C
- **Packaging**: Sealed blister
- **Standard Warranty**: 13 months from date of despatch (this amounts to a variation of condition 6 of our standard terms and conditions which otherwise apply)

Product Dimensions

All dimensions in mm

IMPORTANT NOTE:

Connection should be made via recommended mating parts only. Soldering to the sensor will damage it and invalidate the warranty.

All performance data is based on measurements made with cylinder gases using a flow rate of 100 ml/min. Conditions at 20°C, 50% RH and 1013 mBar, using City Technology recommended circuitry. For sensor performance data under other conditions, contact City Technology.

Note 1: The regression coefficient of the best fit line should be better than 0.9995 when measured through four data points from testing with 100% N$_2$, 21% O$_2$, 60% O$_2$ and 100% O$_2$.

Key Features & Benefits:

- Meets the requirements of ISO 80601-2-55
- Linear output from 0% to 100% O$_2$
Poisoning

CiTiceLs are designed for operation in a wide range of environments and harsh conditions. However, it is important that exposure to high concentrations of solvent vapours is avoided, both during storage, fitting into instruments and operation.

When using sensors with printed circuit boards (PCBs), degreasing agents should be used before the sensor is fitted. Do not glue directly on or near the CiTiceL as the solvent may cause crazing of the plastic.

Intended Use

These sensors are designed to be used to monitor the partial pressure of oxygen in anaesthesia (not including xenon), critical care, neonatal incubators and general oxygen monitors.

An 'Instruction For Use' leaflet (RM945 Issue 1.0) is included with each sensor.

Stabilisation Time

Allow at least 15 minutes to stabilise in the instrument before calibration or refer to manufacturers instructions.

Cleaning and Sterilisation

In case of contamination the sensor may be cleaned with distilled water and allowed to dry naturally. The sensor is not suitable for sterilisation by steam or exposure to chemicals such as ethylene oxide or hydrogen peroxide.

Calibration Interval

These sensors are designed to have minimal drift over their useful lifetime. For maximum accuracy however they should be calibrated before each use.

If the Sensor is Dropped

If a sensor is dropped, then it should be placed in quarantine for 24 hours and a follow-up check made by a 2 point calibration.

Mechanical Installation

When installing the sensor, it must only be screwed in hand-tight and a gas tight seal ensured. Spanners and similar mechanical aids may not be used, as excessive force may damage the sensor thread.

RFI/EMI Susceptibility

MediceLs contain metal and may be susceptible to RFI or EMI. For further information please contact City Technology.

Certifications

This product has been licensed for sale by the FDA in the US. For confirmation see http://www.accessdata.fda.gov/cdrh_docs/pdf4/K041773.pdf

This product has been licensed for sale in Canada. For confirmation see http://www.mdall.ca
Cross Sensitivity

The table below shows how sensors respond when tested with the gas mixtures listed in ISO 80601-2-55.

<table>
<thead>
<tr>
<th>Test Gas</th>
<th>% O2 Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% He/50% O₂</td>
<td><1%</td>
</tr>
<tr>
<td>80% N₂O/20% O₂</td>
<td>+1% to 1.5%</td>
</tr>
<tr>
<td>4% Halothane/28.8% O₂/67.2% N₂O</td>
<td>+1.5% to +2%</td>
</tr>
<tr>
<td>5% Sevoflurane/28.5% O₂/66.5% N₂O</td>
<td>+1% to +1.5%</td>
</tr>
<tr>
<td>5% Enflurane/28.5% O₂/66.5% N₂O</td>
<td>+1.2 to 1.8%</td>
</tr>
<tr>
<td>5% Isoflurane/28.5% O₂/66.5% N₂O</td>
<td>+1.2% to 1.8%</td>
</tr>
<tr>
<td>5% CO₂/28.5% O₂/66.5% N₂O</td>
<td><1%</td>
</tr>
</tbody>
</table>

Certifications

This product has been licensed for sale by the FDA in the US.
For confirmation see http://www.accessdata.fda.gov/cdrh_docs/pdf4/K041773.pdf

This product has been licensed for sale in Canada.
For confirmation see http://www.mdall.ca

SAFETY NOTE

This sensor is designed to be used in safety critical applications. To ensure that the sensor and/or instrument in which it is used, are operating properly, it is a requirement that the function of the device is confirmed by exposure to target gas (bump check) before each use of the sensor and/or instrument. Failure to carry out such tests may jeopardize the safety of people and property.