Key Features & Benefits:
- Meets the requirements of ISO 80601-2-55
- Linear output over 0-100% O₂

Technical Specifications

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>Partial Pressure</th>
<th>Electrochemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>0-1500 mBar O₂</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>9 - 13 mV in 210 mBar O₂</td>
<td></td>
</tr>
<tr>
<td>Response Time (T_{90})</td>
<td><15 s (air to 100% O₂)</td>
<td></td>
</tr>
<tr>
<td>Baseline Offset</td>
<td><200 μV</td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>Linear 0-100% O₂</td>
<td></td>
</tr>
</tbody>
</table>

Electrochemical
Temperature Compensation: <2% O₂ Equivalent (0°C to 40°C)
External Load Resistor: 10 kΩ Minimum (see important note)
Connector: 0.141"/3.5mm mini phone jack
Recommended Mating Part: CTL Lead Part no. B047

MECHANICAL
Weight: 42 g (nominal)
Housing Material: White ABS
Orientation: Any

ENVIRONMENTAL
Typical Applications: Critical Care Anaesthesia
Operating Temperature Range: -20°C to +50°C
Operating Pressure Range: 0.5 - 2.0 Bar
Operating Humidity Range: 0 - 99% RH non-condensing

LIFETIME
Long Term Output Drift in 100% O₂: < 5% signal loss/year
Recommended Storage Temp: -10°C to +40°C (short excursions to +50°C allowed)
Expected Operating Life: 1.5 x 10⁶% O₂ hours at 20°C
Sealed blister
Standard Warranty: 13 months from date of despatch (this amounts to a variation of condition 1 of our standard terms and conditions which otherwise apply)

Note 1: The regression coefficient of the best fit line should be better than 0.9995 when measured through four data points from testing with 100% N₂, 21% O₂, 60% O₂ and 100% O₂

IMPORTANT NOTE:
Connection should be made via recommended mating parts only. Soldering to the sensor will damage it and invalidate the warranty.

For further information on the external load resistance and connection to the recommended mating part, please see Operating Principle OP-04 or contact City Technology.

All performance data is based on measurements made with cylinder gases using a flow rate of 100 mls/min. Conditions at 20°C, 50% RH and 1013 mBar. For sensor performance data under other conditions, contact City Technology.
Poisoning

CiTiceLs are designed for operation in a wide range of environments and harsh conditions. However, it is important that exposure to high concentrations of solvent vapours is avoided, both during storage, fitting into instruments and operation.

When using sensors with printed circuit boards (PCBs), degreasing agents should be used before the sensor is fitted. Do not glue directly on or near the CiTiceL as the solvent may cause crazing of the plastic.

Intended Use

These sensors are designed to be used to monitor the partial pressure of oxygen in anaesthesia (not including xenon), critical care, neonatal incubators and general oxygen monitors.

An 'Instruction For Use' leaflet (RM945 Issue 1.0) is included with each sensor.

Stabilisation Time

Allow at least 15 minutes to stabilise in the instrument before calibration or refer to manufacturer's instructions.

Cleaning and Sterilisation

In case of contamination the sensor may be cleaned with distilled water and allowed to dry naturally. The sensor is not suitable for sterilisation by steam or exposure to chemicals such as ethylene oxide or hydrogen peroxide.

Calibration Interval

These sensors are designed to have minimal drift over their useful lifetime. For maximum accuracy however, they should be calibrated before each use.

If the Sensor is Dropped

If a sensor is dropped, then it should be placed in quarantine for 24 hours and a follow-up check made by a 2 point calibration.

Mechanical Installation

When installing the sensor, it must only be screwed in hand-tight and a gas tight seal ensured. Spanners and similar mechanical aids may not be used, as excessive force may damage the sensor thread.

RFI/EMI Susceptibility

MediceLs contain metal and may be susceptible to RFI or EMI. For further information please contact City Technology.

Certifications

This product has been licensed for sale by the FDA in the US.
For confirmation see http://www.accessdata.fda.gov/cdrh_docs/pdf4/K041773.pdf

This product has been licensed for sale in Canada.
For confirmation see http://www.mdall.ca
Cross Sensitivity

The table below shows how MOX-2 MediceLs respond when tested with gas mixtures listed in ISO 80601-2-55.

<table>
<thead>
<tr>
<th>Test Gas</th>
<th>% O2 Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% He/50% O₂</td>
<td><1%</td>
</tr>
<tr>
<td>80% N₂O/20% O₂</td>
<td>+1% to 1.5%</td>
</tr>
<tr>
<td>4% Halothane/28.8% O₂/67.2% N₂O</td>
<td>+1.5% to +2%</td>
</tr>
<tr>
<td>5% Sevoflurane/28.5% O₂/66.5% N₂O</td>
<td>+1% to +1.5%</td>
</tr>
<tr>
<td>5% Enflurane/28.5% O₂/66.5% N₂O</td>
<td>+1.2 to 1.8%</td>
</tr>
<tr>
<td>5% Isoflurane/28.5% O₂/66.5% N₂O</td>
<td>+1.2% to 1.8%</td>
</tr>
<tr>
<td>5% CO₂/28.5% O₂/66.5% N₂O</td>
<td><1%</td>
</tr>
</tbody>
</table>

MOX Adaptor (15mm Taper)

MOX-2 Sensors are supplied with an adaptor that can be fitted to the sensor thread and used to direct gas flow to the sensor.

SAFETY NOTE

This sensor is designed to be used in safety critical applications. To ensure that the sensor and/or instrument in which it is used, are operating properly, it is a requirement that the function of the device is confirmed by exposure to target gas (bump check) before each use of the sensor and/or instrument. Failure to carry out such tests may jeopardize the safety of people and property.